
rAD-.A1I51 845 PRELIMINARY DESIGN OF THE ADA PROGRAMMING SUPPORT 1/1
ENVIRONMENT CONFIGURATION MANAGER(U) AIR FORCE INST OF
TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI..

UNCLASSIFIED S M SCHULTZ JUN 84 AFIT/GCS/ENC/82D-12 F/G 9/2 N

Ehmmhmmhhhhhu

imhmhmhhmmhl
11fllfllfllflfflfflfflf

Um

11W1 110

IIIJIL251.4 .

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURFAU OF STANDARDS 1q63-A

* . . ' 'S -,. ° -U ---. °*.•. ...°...

In

In

PRELIMINARY DESIGN OF THE ADA PROGRAMMING

SUPPORT ENVIRONMENT CONFIGURATION MANAGER

THESIS

Susan M. Schultz

Captain, USAF

AFIT/GCS/ENC'/82D-12

.,ELECTE
APR 0 11985

.4.-.. *.4 .85 03 13 124

K7

PRELIMINARY DESIGN OF THE ADA PROGRAMMING

SUPPORT ENVIRONMENT CONFIGURATION MANAGER

THESIS

Presented to the Faculty of the School of
Engineering of the Air Force Institute

of Technology
Air University

in Partial Fulfillment of the
Requirements for the Degree of-

Master of Science

by

Susan M. Schultz, B.A. ___

Capt USAF Acein r
Graduate Computer Science KTIS ;I

DI T!".3

J , stif ictixA,_ion
June 1984 ____

By

CINSPECTED Acl~do
1 Dist special

Preface

The purpose of this thesis is twofold. First, it analyzes how

software configuration management is currently practiced, and second,

it gives a preliminary design for the Ada Programming Support

Environment (APSE) configuration manager.

I choose this topic because SCM is an important, but often

overlooked, discipline. SCM offers solutions to such common software

project problems as:

1. systems that do less than expected

2. systems that are delivered later than expected

3. systems that are poorly documented

The software configuration manager as a tool of the APSE will make SCM

easier to accomplish. Many of its tedious functions will be automated.

I would like to thank my advisor, Major Roie Black, for his help

and encouragement throughout this project. I would also like to thank

my readers, Lieutenant Colonel Harold Carter and Major Michael

Varrierur, for their suggestions and support.

Susan M. Schultz

?.- iii):ii

Abbreviations and Acronyms

ACI Allocated Configuration Identification

AFLC Air Force Logistics Command

AFSC Air Force Systems Command

APSE Ada Programming Support Environment

ASD Aeronautical Systems Division

CA Configuration Auditing

cc Configuration Control

CCB Configuration Control Board

CDR Critical Design Review

CDRL Computer Design Requirements List

CI Configuration Identification

CM Configuration Management

CPC Computer Program Component

CPCI Computer Program Configuration Item

CR Change Request

CRISP Computer Resource Integrated Support Plan

DBMS Data Base Management System

DOD Department of Defense

ECP Engineering Change Proposal

FB Functional Baseline

FCA Functional Configuration Audit

iii

Abbreviations and Acronyms (Continued)

FCI Functional Configuration Identification

FQR Formal Qualification Review

KAPSE Kernal Ada Programming Support Environment

PB Product Baseline

PCA Physical Configuration Audit

PCI Product Configuration Identification

PDR Preliminary Design Review

PM Project Manager

PMP Project Management Plan

QA Quality Assurance

SA Status Accounting

SADT Structured Analysis and Design Technique

SCM Software Configuration Management

SDR System Design Review

SIR Software Incident Report

SOW Statement of Work

SRR System Requirements Review

TAC Tactical Air Command

T&E Test and Evaluation

V&V Verification and Validation

iv

.................. i

********~**~*%****%* %***'*** ... * - .

, •.° -

Contents

Preface........................

Abbreviations and Acronyms.........

List of Figures vii

A List of Tables viii

Abstract ix

1. Introduction

Background
Problem Statement 3
Organization 4

Ii. Managing ASystem. 5

Introduction 5
Processes..........................5
System Life-Cce.....................7

III. Software Configuration Management. 14

Introduction........................14
Configuration Identiiain.......... 15
Identifiers.........................18
Configuration Control....................20

CM4 Plan 22
Status Accounting 25
Configuration Auditing 28
Summary 31

IV. Requirements. 33

Introduction...... 33
Ada Programming Suppr Environment. 33
Software Configuration Manager Requirements. 36
Status Accounting Requirements 40

V

. .7.7-L'

Contents (Continued)

V. Functional Design 43

Introduction..o... 43
Diagrams. 45

VI. Conclusions and Recommendations. 60

Bibliography 62

Appendix A: An Example of aCR, SIR, ECPo...... 64

Appendix B: DID for SCM Plan. 67

Vita 70

vi

List of Figures

Figure Page

2.1 System Life-Cycle. 13

3.1 Structure of a System Given in a Tree Chart 17

3.2 Typical Steps Used to Make a Change to the System 23

3.3 Typical Events to Record for a CR. 27

3.4 Major SCM Events in the Life-Cycle 32

4.1 APSE Structure 3

5.1 SADT Arrow Definition.

vii

List of Tables

jTable Page

I Overview of Reviews and Audits. 8

II Characteristics Used to Group Software

Processes Into CPCIs 19

III Verification and Validation Characteristics 29

IV List of Tools and Techniques Used in V&V 30

viii

Abstract

Today the development and maintenance of software are becoming

prohibitively costly. With the goal of reducing the cost of producing

a software system without sacrificing the quality of it, the

Department of Defense (DOD) is sponsoring the development of the Ada

Programming Support Environment (APSE). This paper explains the

APSE. It also explains the requirements and gives a preliminary

design of one of the major tools of the APSE, the configuration

manager. The preliminary design of this tool is presented using

Structured Analysis and Design (SADT) diagrams. The preliminary

design includes only a functional description of the configuration

manager. How to implement it is left for further research.

Prior to presenting the preliminary design of the configuration

manager, a description of how SCM is currently practiced is given.

SCM is divided into four functions. They are configuration

identification (CI), configuration control (CC), status accounting

(SA), and coxufiguration auditing (CA). SA is the only function that

can be completely automated. Therefore, the preliminary design

emphasizes the SA function.

ix

pi . . . " ° . ." . " "• • • :

PRELIMINARY DESIGN OF THE ADA PROGRAMMING

SUPPORT ENVIRONMENT CONFIGURATION MANAGER

I Introduction

Background

Today in projects that involve both hardware and software, a

"software problem" exists. Software systems are prohibitively

costly. The Department of Defense (DOD) estimates that, in projects

that involve both hardware and software, only 15 percent of the total

cost is attributed to the hardware. Of the software cost, 70 to 90

percent of the money is used for maintenance and long-term life-cycle

support (Ref 10:4). With the goal of producing quality software at a

lower cost, the DOD is supporting the development of the Ada

Programming Support Environment (APSE). Briefly, the APSE is a

project to develop an environment to create software primarily for

embedded computer systems. The APSE consists of the new computer

language, Ada, and a complete set of automated tools to develop, run,

anc nanage Ada programs. The requirements of the APSE are presented

in a DOD document called "Stoneman" (Ref 10) which will be referenced

frequently throughout this paper.

One of the APSE tools is the configuration manager. This tool

is to automate as many of the Configuration Management (CM) tasks as

possible. CM is defined in AFR-65-3 as:

a discipline applying technical and administrative direction

and surveillance to:
1. identify and document the functional and physical

characteristics of a configuration item

1-

..

2. control change to these characteristics, and
3. record and report change processing and implementation

status (Ref 19).

In the past, CM was applied almost exclusively to hardware. CM

was not applied to software primarily because programming was

considered to be almost an art, not a scientific method used to build

a product. Few design techniques were used and changes were made

haphazardly. Today attitudes towards software have matured. A piece

of software is considered a product, and many tools and techniques,

including CM, are used to produce it.

CM applied to software is called Software Configuration

Management (SCM). Although SCM has taken its terminology and

structure from CM, differences exist between the two. The differences

are caused by the differences in managing software and hardware.

These differences are:

1. Software is easily changed in any stage of the life-cycle

while hardware is not.

2. Hardware components wear out while a piece of software will

not.

3. A production phase is not needed for software. It is easily

reproduced.

In order to accomplish the goals of SCM, it is divided into four

functions. They are Configuration Identification (CI), Configuration

Control (CC), Status Accounting (SA), and Configuration Auditing

(CA). CI involves identifying and labeling the software items of the

system. This function is important in order to have a reference point

2

-7

for changes. CC involves methods of controlling changes made to the

system. This is accomplished through documentation, procedures, and

the Configuration Control Board (CCB). SA involves recording,

storing, and reporting the history of the system. Both automated and

manual techniques are used. CA involves verifying that the software

parts of the system are what they are claimed to be through the use of

software audits.

Problem Statement

The prime purpose of SCM is to control the software and its

associated documentation throughout the project. In the APSE, all the

information relating to a project is stored in a data base.

Accomplishing SCM in the APSE will require manipulating data that

resides in the data base. The goal of this paper is to give the

preliminary design of the APSE software configuration manager.

The SCM functions of CI, CC, and CA can not be fully automated.

The CI task requires that a decision be made on how the software

system is divided up. How this division is made is influenced by many

factors and is unique for each project. CC consists of a set of

policies and procedures that project members must follow. These

policies are made by management and will differ from pr-dct to

project. CA is rechecking the work already done. Automated tools

will only assist in this task. The success of CA still depends

heavily on decisions made by the auditors. In contrast, SA can be

fully automated. The task primarily involves storing and retrieving

selected data from the data base. Due to the fact that of the four

3

SCM functions only SA can be fully automated, the preliminary design

will stress SA.

Organization

To produce this preliminary design, it is necessary to

understand how a system is managed. Chapter II discusses this. In

addition, it is necessary to understand exactly what SCM is and how it

is practiced today. This information is given in Chapter III. Since

the configuration manager is part of the APSE, all the requirements

set forth in "Stoneman" must be met. An overview of the APSE and its

requirements are given in Chapter IV. The specific SCM and SA

requirements are also given. Chapter V presents the requirements in

the form of Structured Analysis and Design Technique (SADT) diagrams

with a focus on the SA function. The last chapter gives conclusions

and recommendations.

4

.-..-

. '

II Managing the System

Introduction

This chapter gives an overview of managing a system. The phases

of the system life-cycle are defined and the major events that happen

in each are explained.

Processes

In the study of how systems are built, it has been recognized

that three different processes exist. Bersoff, Henderson, and Siegel

(Ref 8) label them as:

1. Planning, direction, control.

2. Execution.

3. Evaluation.

Planning, direction, and control is done by the managers. As the name

suggests, it involves developing a plan of attack, telling who to do

what, and continually checking that the plan is proceeding as -

expected. The execution process is done by the "doers," the people

who actually design and build a system. They include the engineers,

programmers, analysts, and manufacturers who build hardware.

Evaluation is done by people who ensure that the system is "good."

"Good" in the sense it does what it is supposed to do, at a reasonable

cost, and is completed in a reasonable amount of time. Evaluation

includes the disciplines of Test and Evaluation (T&E), Configuration

5

. -

Management (CM), Verification and Validation (V&V), and Quality

Assurance (QA). Evaluation is also known as product assurance.

Most successful projects will have a balance of each of the

three processes. Unfortunately, many project managers practically

ignore the evaluation process and emphasize the execution process.

This philosophy contributes to the well-publicized expensive and

unworkable systems (Ref 9). The APSE is being designed to incorporate

tools for all three processes.

In the DOD, the process of building a major weapon system is

rarely done in one organization. Four organizations are usually

involved in obtaining a weapon system. The project is procured or

managed by one Government organization, developed by a private company

contracted by the procuring organization, and is used and maintained

by two other Government organizations. For example, in the Air Force,

a typical alignment is as follows: the procuring organization is Air

Force Systems Command (AFSC) who hire McDonnell-Douglas, the user

organization is the Tactical Air Command (TAC), and the support -

organization is Air Force Logistics Command (AFLC). With the

exception of the users, all organizations will be involved with the

processes of managing the system. But the procuring organization is

held responsible for the development of the system and is held

accountable for any problems. It is, therefore, especially important

that they are well-managed. This paper will emphasize their

responsibilities.

6

System Life-Cycle

From the time a system is conceived until it is no longer

needed, it passes through different phases. These phases are known as

the system life-cycle. Different authors give different labels to

each phase, but the meanings are similar. This paper will use the

Government terms explained in the 800 series of regulations. These

regulations cover the acquisition of embedded computer systems. Since

the APSE is being sponsored by the Government and is being developed

primarily for embedded computer systems, this is an appropriate choice.

Before discussing the life-cycle, two terms need to be defined.

The first is baseline. A baseline is a document or set of documents

that have been accepted and are under CM. It is used as a reference

point for major milestones in the system life-cycle. The second term

is reviews and audits. Reviews and audits are conducted at various

times in the life-cycle. They are attended by representatives from

the involved organizations and are presented by the developers.

Through the reviews and audits, the baselines and design documents are -

formally accepted. After a review or audit, the committee can either

approve, disapprove, or give contingent approval. In contingent

approval, the unsatisfactory parts of the document or product must be

changed by the developers. Table I summarizes the reviews and audits

that occur during the system life-cycle. The discussion below

describes a typical system life-cycle. Not every system will fit into

this pattern.

The first phase of the system life-cycle is called the

7

0 0

01~4 44014

0 41 414W 00 4 101
0) 1 4.0 - 0 4)4)c

4)C $4$4W
4.4 -) 0 1 co0 0o 014)

0be . 4.40 4. 0 4
-H a, 0 1 0

01 3 4) 01 4) 4) ~
W0 014 W 604 4.) 4) q Tw. 31.4 $4 44 0 41

41v "1 00 U) W)H g
0)g 0 Q 4. cn.

u' Ai >, 001 w 4 c

W W% ..4 u- - $4 go W

0w U)~ .w 41 44 0 41*0W
0 d 4.1 41 00 OW W W

W ~ - .0 0 4) 0
00W 8 U 4 0-I 0 4 4-3W

CO U)) ~ 4J 0 4.4 M -H 44 4W
0) 93 o t 0 0 0$4 $4.r "-f 4 tol

to 0 .w4 14 H 0) W0 '-i'-40101 'vi-4 -4 H '.0.
-H '. 4J >(L 01 043 0C >g 0 > -40

V4 1

0) 0 4

'v0

U) 00 4) ca0 4W6
A 01 U)QU) c

4)- 0.4)'-44 Q m"- V

ca 00- 00 V 01 - o 104
W W0 0 c

0 co4 ____P___4_____w___ __0.____o

U) 44 44 Q-I 0- 1 4 H 1 w4
010 0 00 O 4 1 W 00 0 -4 000M24

r- .0 00 w v- 0 0 v-I W 4 .-
p 01 to 4. 10v444 U)'v 0 'V 104J . 4

I.' H~~$4o> 4 > 4$

0 4.' 4"4 04.Ut 0 - 4 4.4 414.4 0 4 4.4.4

40 0- 4- - "v. W .. 41. -Hl vHU -I
m w> 0a >- 43)W > -Hm 01 1'-0

, 0 0 4 1.4$ 0 $4 :30 0>
0n a0) A w.0

4. '-v-> ~ 0H -pW

W 02
1.4 04.1

CA 1.40

44 0 4

o 4

0f 1-4
0 0 co.

IL) 4.a)c

A-H -

41I

41.

02

-.4

4.4441

od

~~4-1

00

cco

-. 4 C)1

4.) >Z4 93rot0 1

A0 V 0 9
0 4 uI.4

4.r4e .

pi

conceptual phase. During this phase, the basic purpose and

requirements of the system are defined. The System Specification is .

written. This document

. . . states the technical and mission requirements for a system,
defines the interface between these elements and specifies

system level requirements (Ref 4:68).

It also includes the general requirements of the software such as the

language it will be written in and what standards it will follow.

This document will become the Functional Baseline (FB) after it is

accepted by the System Requirements Review (SRR).

The second phase of the system life-cycle is called the

validation phase. During this phase, the basic concepts of the system

will be validated. For development purposes, at this time the system

splits into two major parts: software and hardware. Each major

software part of the system is called a Computer Program Configuration

Item (CPCI). While each major hardware part is called a Configuration

Item (CI). For each CPCI and CI, a Development Specification is

written. It

. . . specifies the performance, design, and validation
requirements for a CPCI in operational, functional or mathematical
terms and in sufficient detail to serve as a contractual
definition of both the product to be delivered and the formal
process by which it is validated (Ref 4:72).

After they are accepted through the System Design Reviews (SDR), they

". become the Allocated Baselines (AB).

The third phase of the system life-cycle is the full Scale

Engineering Development. During this phase, each CPCI and CI is

designed, tested, and built. They are integrated and the whole system

10

.~~ ~ . . . !p:

is tested. The software has its own life-cycle. The phases are

Analysis, Design, Coding and Checkout, and Test and Integration.

During the analysis, the preliminary Product Specifications are

prepared. The Product Specification gives the detailed design of a

CPCI as required by the AB and is usually written in three stages.

They are:

1. A preliminary version defines functional flow, storage

allocation, control functions, and data base structure sufficiently to

guide detail design.

2. A complete code-to-version defines the entire design in

terms of detailed technical descriptions and flow charts.

3. The final verpion describes the coded version of the CPCI,

includes actual timing and storage values, and includes or references

a complete source or object listing (Ref 4:75).

The Preliminary Product Specifications are accepted through the

Preliminary Design Reviews (PDR). During the design phase, the

Product Specifications are updated to item 2 described above and

accepted through the Critical Design Reviews (CDR). During Code and

Checkout, the code for each CPCI is written and compiled. During Test

and Integration, the CPCIs are integrated and the system is tested.

The final Product Specifications are also written and, through a

series of reviews and audits (Functional Configuration Audit (FCA),

Physical Configuration Audit (PCA), Functional Qualification Review

(FQR)), become the Product Baselines (PB). A PB includes the computer

listing of the CPCI.

11. i

The fourth life-cycle phase is called the Production Phase.

During this phase, the system is built and delivered to the user. The

last phase in the system life-cycle is the Deployment Phase. During

this phase, the system is transported to its operational site,

installed, demonstrated, and tested. The Deployment Phase may begin

before the Production Phase is completed. If necessary during the

Deployment Phase the system is modified or enhanced. The system

remains in this phase as long as it is operational.

As a summary, Figure 2.1 shows the system and software life-

cycle and the major events that occur during each of them.

12

.....................- :. o.

'4-4

0

$4 -4

41 00

0

$44. '-44

41ic 04

4j-

H U 0

E-4 JI

C.) DO a
00

C.1- 0. 4'

'-4

0)/

~Z4 ~ 0 13

III Software Configuration Management

Introduction

SCM is an important part of successful program management.

Through SCM management can help reduce the cost of the system, ensure

that it is delivered on time, and does what the user expects it to

do. Current SCM procedures are a combination of manual and automatic

data process'ng techniques. The discipline is nonstandard. Many

system development shops have excellent procedures, while all too many

have none at all. The success of SCM is very dependent on the

knowledge and capabilities of the individual manager. The APSE will

help correct this situation by offering an environment that automates

many of the SCM tasks and makes the other easier.

SCM is defined as

• • . the discipline of identifying the configuration of a system
at discrete points in time for purposes of systematically
controlling changes to this configuration and maintaining the
integrity and traceability of this configuration throughout the
system life-cycle (Ref 8:20).

As stated earlier, SCM is divided up into four functions. They are

Configuration Identification (CI), Configuration Control (CC), Status

Accounting (SA), and Configuration Auditing (CA). In this chapter,

for each function the following information will be given: the

definition, why it is a necessary part of SCM, when it is done in the

life-cycle, and how it is currently done.

14

!

...

...............................

Configuration Identification

Configuration Identification (CI) is usually defined as the set

of technical documents that define the functional and physical

characteristics of a system. Government documents specify three

documents that are generally used. They are the Functional

Configuration Identification (FCI), the Allocated Configuration

Identification (ACI), and the Product Configuration Identification

(PCI). These documents are also known as the to-be-established

baselines. As stated in Chapter II, the FB is a system specification,

while the AB and PB are development and product specifications. CI

also includes the process of identifying and labeling the software

parts of the system.

Each major software part of a system is called a Computer

Program Configuration Item (CPCI). All the CPCIs together form the

software part of the system. The CPCI is the most important component

of the software items because it is controlled by SOM. Each CPCI goes

through the software life-cycle. Therefore, each has its own

allocated and product baseline. A change cannot be made to the

requirements or design of a CPCI without formal approval. Regular

status reports on each CPCI must be issued by the developers and each

CPCI will undergo formal test procedures.

Besides the CPCI, other levels in a system are designated. From

highest to lowest, the hierarchy is as follows:

System - Includes everything needed to complete the task

required. The system includes both inanimate objects and personnel.

15

System Segment - It is part of a system sometimes referenced as

a subsystem or functional area. It may contain more than one

functional area and consists of Cls or CPCIs or both. It is used when:

1. A system is purchased incrementally.

2. A part of an existing system needs revision.

3. A system is divided up for different programming offices.

CPCI - "An aggregation of computer programs that satisfies an

end-use function and is designated by the Government for CM" (Ref

2:52).

Computer Program Component (CPC) - A functional or logical part

of a complex CPCI. It is used for ease in explaining the design of a

complex CPCI.

Routine - A subroutine of a computer program. Large and complex

systems may require more levels. Small systems may not use them all.

When a system is broken down to the routine level, a tree chart can be

drawn to show the structure of the system. An example is given in

Figure 3.1.

CI is a necessary part of SCM because it helps management

control the software. First, through the baselines, the state of the

software can be defined at any time. Second, labeling gives a point

of reference to everyone involved in the project.

The selection of the CPCIs for a system is not a trivial process

and will vary from project to project. If a great amount of control

is needed, then more CPCIs will be created. A large system that deals

with life and death situations will need more control than a small

16

SEMN EGMENT _

ROUTINE 1 ROUTINE 1

ROUTINE 2 ROUTINE 2
ROUTINE 3

Fig 3.1. Structure of a System Given in a Tree Chart

routine project. In determining the number of CPCIs, trade-offs have

to be made. Too many CPCIs and the SCM task becomes too complicated

and unworkable. But if too few exist, there will not be enough

control and the SCM goals will not be accomplished. The solution is

usually to have different size CPCIs in the system. Small CPCIs, such

as a single routine, will be chosen for critical areas. Large CPCIs,

such as a functional area consisting of many modules, will be used for

more routine areas.

The ASD, Airborne Systems Software Acquisition Engineering

Guidebook for Configuration Management ASD-TR-79-5024 (Ref 2), gives

17

.•. . .

•-..-.-....-,.,.-..*,- .," -i.... -. "-".-. -.'..-,-,'-." .'.,-.--..- .. , . -: . .'' -- -... ,.. -'. ., -, •- -i
• °" " ° "' ,- " . " S - . 4!. .. L.A... L.a.,,......J.- - - - - - - -, " - . °° . % . % , . % .- ... z o "%°"l '

°

-°. " , .
'

'•°' '.."

. 77 77. 7. 7 77 -

some guidelines in selecting CPCIs. First, one must identify the

software processes that are needed to use and maintain the system over

the entire life-cycle. The processes will include operational,

support, and test software. Secondly, one must group these processes

into CPCIs. For example, Table II lists some of the guidelines used

to choose CPCIs by ASD. The CPCIs of a system will be suggested

during the conceptual phase and formalized in the design phase. The

selection of CPCIs is not generally done by the SCM people. It is

usually done by the software engineers. The SCM people will check to

ensure the CPCIs are broken into logical parts and are complete. The

CPCIs are the basis for SCM.

Identifiers

After the CPCIs and other components are selected, they and

their associated documents must be labeled with identifiers. The

system cannot be controlled unless its components have names.

Different kinds of labeling systems exist. By Government

standards, an acceptable method has identifiers that have system

unique names for each component. The software component must be able

to be filed and retrieved on a computer system. Therefore, the

identifier must have at least a portion that does not change. Other

favorable features for identifiers are variability, traceability,

functional significance, pronounceability, and compactness.

Variability means that the identifier has a portion that can change to

reflect changes, such as new versions. Traceability means that the

identifier tells where the component came from. It could identify the

18

"' "' " '..." "" - _ ... l...', ,......

TABLE II

Characteristics Used to Group Software Processes Into CPCIs

Guidelines for Grouping Software

9 Of the same type such as operational, test, or support.

* To be used on the same computer.

e Able to be developed and tested by one contractor.

* Needed at the same time in the life-cycle.

* Of the same importance to the system.

* Of the same difficulty to develop.

e In need of the same level of developmental control.

e Small enough to be monitored by one person.

19

.L.L " ..."..-..........,-.,"-'-.''.". ." .,.-,'. ..- "'., _,"_..":.' .".':."-.-' _: .' .'7.. , i.' .'

contractor or the position in the structure tree. An example given in

Reference 2 is a four-character identifier where the first character

indicates the CPCI, the second the CPC, the third the module, and the

fourth the routine. Functional significance means that the identifier

indicates the function of the component, such as SINE being an

identifier for a routine that determines the sine. Pronounceability

is a good feature because a pronounceable identifier is easier to

remember. The last feature, compactness, means that there must be a

limit to the length of an identifier. The restrictions may come from

the operating system, Government standards, contractor standards, or

administrative needs (not too cumbersome to use). No one method of

identifying software components will be able to have every feature

mentioned above.

The identifying and labeling of the CPCIs is done in the

conceptual phase of the system life-cycle. They are accepted in the

validation phase through the SDR and documented in the Allocated

Baselines.

Configuration Control

Configuration Control (CC) is the process of controlling the

changes made to the software or the documents in the system. CC is

involved only for items formally under SCM. For example, a change to

a sanctioned baseline, a test procedure, or a technical manual are

subjected to CC. Changes result from new requirements or errors found

in the system. CC is an important aspect of SCM. Through its

methods, whenever a change is made to the system, everyone involved in

20

..

the system is aware of it. No one can make a change independently to

any information under SCM. Everyone is aware of the latest version of

the system. All of the documents reflect the current software. CC is

done in all phases after the FB is established.

CC is accomplished through three methods. They are

documentation, procedures, and organizational bodies.

The main organizational body for CC is the Configuration Control

Board (CCB). The CCB is a group of people involved in the system who

make decisions concerning the project. The CCB will approved the

changes made to the system. If contractors are involved in the

development of the system, two CCBs will probably be formed, the

procuring CCB and the contractor CCB. The procuring CCB is set up

during the validation phase. Their responsibility will be to approve

changes to the baselines. The Program Manager (PM) is usually the

chairman of the procuring CCB. Other members include the top managers

in each functional area, and if it is a Government procuring CCB,

representatives from participating Government agencies. Specialists

and contractors may be invited to attend procuring CCB meetings as

advisors. The contractor CCB is similar to the procuring CCB, except

the members are from their firm and are concerned with the items they

are developing. They will be mainly concerned with technical

documents.

The CCB is responsible for both hardware and software. If the

system being developed is large, a separate CCB for software and

hardware may be provided. If the system is being developed for a

21

- ..,-.--,.

third party, a CCB will have to be set up in that organization to

monitor changes made to the system after it is operational.

The second method of accomplishing CC is through procedures.

Procedures are the methods approved by the CCB to make a change to the

system. Procedures are not firmly set. It must be remembered that

each CM plan is tailored to each project. SCM is not suppose to

encumber the project, but rather improve the quality of it.

The final method of CC is documentation. Forms are the most

common way to document. Many forms are used by the Government and

private firms. A few of the most common will be discussed. The

Change Request (CR) is a form used to state that a change in the

system requirements is desired. If a user or auditor discovers a

deficiency in the system, he submits a different form called the

Software Incident Report (SIR). Both the CR and SIR are analyzed by

the developers. After the analysis, they decide if the change is

really needed and/or beneficial. If it is, an Engineering Change

Proposal (ECP) is submitted to the CCB. The CCB determines if the

change will be rejected or accepted. If it is accepted, portions of

the life-cycle will be repeated. Rejected ECPs are filed for further

reference. Figure 3.2 shows these procedures. Appendix A gives an

example of a CR, SIR, and ECP.

CM Plan

Although not a direct function of CC, the CM plan is discussed

here because it is a controlling activity. The general plan should be

formulated during the conceptual phase. If the system consists of

22

• . .2 '.'. ., ' . * * J z.' . ,','" . . *, -. ''" " ' '. °."'' ,' .' ''. . .

Perceived Change in
deficiency the system

in the system desired

SIR I CR

Notify

Apprlov
Writer of
SIR or CR Disapprove Analyze

Approve

Fil e ...

.

Disapproval Analyze-Z.

for Future Disapprove..-.
Reference "i'[

Approve.-

Ito Mak
L.Change I

Fig 3.2. Typical Steps Used to Make a Change to the System..

23- ,

both hardware and software, separate plans can be made early in the

full scale development phase. According to Reference 8, topics that

should be covered in the CM plan area:

1. An overview of the system.

2. CM organization - Besides the four functions, the role of

the CCB should be discussed.

3. CM tools - This part should describe the forms that will be

used, labeling conventions, and any automated aids.

4. CM procedures - This part will state what will be done

during each stage of the life cycle.

5. CM resources - At this time, the money and staff needed will

be given.

In the Government, the CM plan may be given in other required

documents. These documents are the Program Management Plan (PMP),

Computer Resources Integrated Support Plan (CRISP), Statement of Work

(SOW), and the Contract Data Requirements List (CDRL). The PMP is

written by the Program Office early in the Conceptual phase. It is a

directive for everyone involved in the system on the overall

acquisition plan. It is changed whenever necessary. The CM plan is

developed following this plan and, when approved, may become part of

it. The CRISP lists the computer resources needed throughout the

system life-cycle, including CM resources. The SOW is a document that . •

defines the developers (contractors) tasks to complete the project.

The CDRL lists all the deliverable contract items. Each item in the

CDRL has a Data Item Description (DID) number. The DID refers to a

24

°-°~~~~~~~~~.-...-............/ L-,L i... .

Government accepted outline for the specified document. Appendix B

gives a DID for a Software Configuration Management Plan.

Status Accounting

Status Accounting (SA) is a process of recording, storing, and

reporting the history of a project. The history tells when, how, and

why the events happened. The history is important for many reasons.

First, it can help new personnel learn about the project. This is

especially important if they join in the middle or end of a project.

Studying the history of a project can also help people learn about

developing software. From studying past projects, they can try to

repeat the good features and avoid the mistakes. Also, cost

estimates, staff needs, and time schedules can be made from studying

past projects. Lastly, a log of the history can be used for

preventative purposes. From past experience, areas that have been

shown to cause problems can be corrected before the problems develop.

SA is done during all phases of the life-cycle. SA's importance

increases as the life of the project increases. Frequent personnel

changes are a common problem in the military environment. During a

project that has a long life span, generally more people will come and

go. SA will help them become part of the project. Also, SA is more

difficult when the project is very complex. The process of storing

and recording what happened and why will be harder. An effective SA

plan is a major factor in successful SCM.

As stated before, SA involves recording, rtoring, and reporting

data from the projects. Exactly what should be recorded depends on

25

........ ~ -... y.......

the size and complexity of the project. It is better to record too

much than too little. Bersoff, Henderson, and Siegel (Ref 8) suggest,

as a minimum, it is necessary to record the events required to

sanction a baseline and the events following a CR and SIR. Figure 3.3

gives the typical events recorded following a CR. Some projects will

need to have a detailed description of what, why, when, and how for

each event, while other may just need a what and when. What is

required should be stated in the CM plan. This data is stored in

files. The storing and recording will be done manually or

automatically in a Data Base Management System (DBMS). For Government

agencies, DODD 5010.19 states that

• . . automation of status accounting shall be employed only when
the volume of data or rapid response time makes it necessary and
it is economically feasible (Ref 2:112).

With either method, the life-cycle of each CPCI should be traceable.

The last function of SA, data reporting, is the method used to

keep the project personnel informed about the project. Bersoff,

Henderson, and Siegel (Ref 8) suggest the following reports be made.

They are:

1. CCB, Review or Audit minutes.

2. Periodic baseline status reports.

3. CR and SIR status reports.

4. Executive summary of SCM activities for management review.

5. Baseline releases.

6. Ad hoc reports generated by request.

Government documents give specific names to the documents that will be

26

"7-

Figv33.l pical Evns reredfraC

272

..-.... &

- - - - - - - - - - - - - -- - - - - - - - ~. ~ A .A. t.Ana'lyzedc .t

produced from the SA activity, but the information is basically the

same as the above list. All reports that are required should be

stated in the CM plan.

Configuration Auditing

The last function of SCM is Configuration Auditing (CA).

Government documents define CA as the FQR, FCA, and PCA. These audits

are designed primarily to ensure that the software parts of the system

(including documents) do what they were designed to do. As stated in

Chapter II, these audits are performed near the end of the Full-Scale

Engineering Development phase. They are first performed at the CPCI

level and then at the system level. If an error is discovered, the

auditor must go through the formal CC procedures to implement a change.

Bersoff, Henderson, and Siegel (Ref 8) define CA in a different

manner. Their definition states that audits are done throughout the

life-cycle and preferably done by independent auditors. The

Government considers this to be part of the Verification and

Validation (V&V) process. Table III gives an overview of what V&V is

and is not (Ref 7).

The Government recommends V&V be done only when it is
I!

economically justified in terms of life-cycle benefits" (Ref 7:19).

The following examples were given as projects that would justify V&V:

i. Software with a high cost of failure (e.g., space systems).

2. Software for which the cost of error detection through

operational use is greater than the cost of audits (e.g., aircraft

operational flight programs).

28

TABLE III

r Verification and Validation (V&V) Characteristics

Independent Verification Is Not

And Validation Is __ _

An independent technical Conducted by the personnel
activity that develop the software

Aimed at product evaluation Checking the code during
throughout the life-cycle Development Test and

Evaluation (DT&E)

Identifying errors early Identifying errors during DT&E

Employed to ensure that all Employed to ensure that only

system and subsystem test requirements of the
requirements have been computer program development

fulfilled by the software specification are met

Complementary to the A duplication of development
development effort activities

Designed to help the Conducted to harass the
developers developer

Additional insurance A guarantee of success

3. Real-time software which must work under all scenarios

(e.g., nuclear safety programs).

Many people disagree with the Government and feel, despite the high

cost, V&V should always be done. The money spent up front will pay in

the long run by producing a better product. The advantages include:

1. Improved reliability - Fewer errors are found after the

system is operational.

2. Greater visibility - The chance of success is increased.

3. Reduces the cost - Errors are found earlier in the life-

cycle when they are easier and cheaper to correct.

29

Accomplishing any kind of audit is a complex process that needs

to be managed by experienced people. It is done using many techniques

and tools. Table IV gives a list of some of the tools and

techniques. Explanation of these is beyond the scope of this paper.

TABLE IV

List of Tools and Techniques

Tools

Accuracy Study Dynamic Analyzer Relocatable Loader
Analyzer

Dynamic Simulator Requirements Language

Assembler Processor
Editor

Automated Test Requirements Tracer
Generator Engineering (Scien-

tific Simulations) Restructuring Program
Comparator

Environmental Software Monitor

Compiler Simulator

Standards Enforcer
Compiler Validation Flowcharter
System Statement-Level

Hardware Monitor Simulator
Consistency Checker

Instruction-Level Static Analyzer

Cross-Assembler Simulator
Test Beds

Cross-Reference Instruction Trace

Program Test Drivers, Scripts,
Interface Checker Generator

Data Analyzer
Interrupt Analyzer Test-Result Processor

Decision Tables
Logic/Equation Timing Analyzer

Decompiler Generator
Trace

Design Language Overlay Program
Processor Units Consistency

Path Analyzer Analyzer
Diagnostic/Debug Aids

Program Sequencer Workload Analysis

Driver Aids

30

.- - .

TABLE IV (Continued)

Techniques

Algorithm Evaluation Flight Tests Prototyping
Test

Functional Testing Simulation
Analytical Modeling

Logical Testing Standardization

Capability Matrices
Modular Programming Static Analysis

Code Inspection
Path Testing Stress Testing

Correctness Proofs
Performance Structured Programming

Design Inspection Evaluation
Symbolic Execution

Emulation Post-Functional
Analysis System Simulations

Equivalence Classes
Process Construction Top-Down Programming

Error-Prone Analysis

Production Libraries Walk-Thrus
Execution Analysis

Summary

SCM is an involved procedure that involves many techniques.

Software Configuration managers deal with both the management and the

doers. They watch over the project to ensure a quality software

product is being produced. They have been described as the policemen

of the project. As a review of the SCM process, Figure 3.4 gives the

major SCM milestones that happen in each phase of the life-cycle. It

should be noted that these milestones are for the "average"

Government-sponsored embedded computer system. SCM for smaller

software projects may not include all of the milestones.

31

0)

0 -4)

0142
0 4) $4w 1 L 2

4-4 -r 4 4 4
0j w* 0 0 0

0 00004$ $ 4 -

0P w 0 4-4 t
) 44- 02200

41) M 0 *02 0 0 0

4 e I 0 C14 0 CC A40 >1C 4.) 1*4

02 4 0 c o 02 4 0~I4 P-4 02.-1 u 4cI 4.1
Em I E-H 0 4 CC r4 d> (L)0 0J0200

0 I-

0 0 u 0

0 3 $4 0

0 0

00 r4 0 44

I-I- 02 I
0H M H,- *- d0 H 0
0o 00 U 04) ~ 44 A P00

u2 " 1 A 4 0 0 04 (

00)C 0 0 -4 8 CJ 0 44 - 4.

-4 C 0-44 ,1 00 ~ U 0

*1A i 0 w "
P4 0 .1 p ck

i2 02

0 *-4 41 0
cnm W2 0) -4 41~w

002 0.-4 bo~4
Hr 02 0 -Hr

I .-4 H-i4
14. 4) 0)

Cd1 0 4.
1
v4 02

0 ~ C to4. -4 00 40

021 04 4

cc K~ m 0
:3 cn 0 4)
4 ~ 0) 0 039Q 4

4) o

H d 0 14 41 W. 0

0 0 4!

0.02 '-40 0 ~ 32

r. - -.*-*

IV Requirements

Introduction

This chapter will present the requirements of the Ada

Programming Support Environment (APSE) SCM tool. In addition, the

specific requirements of the SA part of the tool are given. Prior to

this, an overview of the APSE is presented.

Ada Programmin Support Environment (APSE)

As stated previously, the APSE is a DOD-sponsored project to

create an environment to produce software primarily for embedded

computer systems. A major feature of the APSE is the new computer

language Ada. Ada is designed to be the single computer language used

in DOD-developed embedded computer systems. Not only can Ada handle

the special requirements of embedded computer systems, but it offers

all the conventional capabilities of a general purpose language. An

important feature of the Ada design is that it emphasizes program

reliability and maintenance. This is achieved by choosing a design

that stresses program readability over ease of writing code.

Although Ada is an important feature, the APSE is more than a

new computer language. As the name suggests, it is an environment.

The philosophy of the APSE design is explained in "Stoneman." The

design will be based on a few simple concepts which are

straight forward to use and understand" (Ref 10:14). The APSE

33

21° • .

will support all project members throughout the entire life-cycle of

the project with a complete set of the integrated tools. All the

tools and user programs will be written in Ada. They will be machine

independent. As much as possible, the APSE itself will be portable.

Finally, the APSE will be a dynamic system which can always be

improved upon.

The APSE will be composed of three basic parts: the data base,

the interface (user and system), and the tool set. The data base will

hold all the information concerning a project during its entire life-

cycle and will be a key feature of the APSE. The data base will store

uniquely named objects. Objects, as defined by "Stoneman," are

. . . identifiable collections of information" (Ref 10:18). Typical

objects would be a test data file, a documentation file, or an Ada

source file. Different versions of each object can exist. Different

groups of objects can be put together to form "software

configurations." A configuration is itself an object; thus, different

versions of it can exist. Large groups of objects, such as all

objects pertaining to a project, can be grouped together into

partitions. Access controls can be used on both the object and

partition level.

The data base will permit relationships between objects. The

user will be able to travel through the networks formed by these

relationships. Each object will be supplemented with a minimum of

history, categorization, and access attributes. The user will be able

to access both the information in the object and the attributes. The

34

• - - :-;._.".- .").)i'" "....'.'.""'".". ""."."...."""."..."."".."."."."....."....."".".".'..".

history attribute contains all the information necessary to maintain a

complete history of the object. The history attributes will be the

basis for configuration control. The categorization attribute will

contain the category of information contained in the object. This

information will be used to protect the integrity of the object by

indicating which parts of the object cannot be changed by any

operation. The access attribute contains which executing programs and

users have access rights to the object. In addition, the data base

will be able to generate reports and system statistics.

The second part of the system is the interface. The user

interface will allow the user to use the APSE tools through a command

language. The command language will be machine independent. The

system interface will allow intercommunication among the APSE tools.

The last major part of the APSE is the tool set. It will

provide a complete set of integrated tools for Ada program

development, maintenance, and configuration control. Like other parts

of the APSE, the tools are portable, written in Ada, user-friendly,

and open-ended. The other requirements will be discussed in the next

section. Some examples of APSE tools are the compiler, editor,

debugger, and linker.

In order to achieve the goal of machine independence for both

the user programs and tool set, "Stoneman" defines two lower levels in

the architecture of the APSE: the Kernal Ada Program Support

Environment (KAPSE) and the Minimal Ada Program Support Environment

(MAPSE). To explain these levels, "Stoneman" gives the diagram shown

35

-- .--. -'.." "

.-

in Figure 4.1. Level 0 is the only level that is machine dependent.

It contains the host hardware and software as needed. This part is

kept as small as possible in order that it can be easily modified to

fit any machine, allowing the APSE to be as portable as possible. The

KAPSE is a key feature of the APSE. It is similar to an operating

system. It contains the program execution facilities, the data base,

the data base management system (DBMS), and the interfaces needed.

"Stoneman" does not require the KAPSE to be written in Ada if it has

to make use of the local operating system, filing system, or DBMS.

APSE portability would be lessened if it is not written in Ada. The

MAPSE is a smaller version of the APSE. It contains the minimal set

of tools needed to run an Ada program. The specific tools are listed

in Figure 4.1. The MAPSE is written in Ada. The APSE is an extension

to the MAPSE.

SCM Manager Requirements

"Stoneman" requires that the APSE includes a configuration

control system as part of the tool set. The guidance given in

"Stoneman" is of a very general nature. Specifically, it states

The history attributes provided at the KAPSE level record a
variety of software configuration relationships. Tools to help
structure these relationships, modify them, indicate the
ramification of (potential) modifications, etc., are appropriate
in an APSE. In many systems, the facility will be provided,
subject to suitable controls, to archive or delete superseded
material in the data base or to rederive material subsequent to
and affected by changes (Ref 10:42).

The actual design and how it will be implemented is left open.

Since the software configuration manager is part of the APSE

36.

-• -"

Fig 4.. APSEScE (e02

37PS

.......................................

. -. ... x

tool set, it must meet all the requirements set forth in "Stoneman"

for an APSE tool. These requirements are explained below:

1. An APSE tool must be designed to meet a clear functional

need. In this case, the tool must automate as many of the SCM tasks

as possible.

2. An APSE tool must be written in Ada.

3. If possible, an APSE tool will be designed to conform to

standard interface specifications.

4. An APSE tool will be machine independent and portable.

5. An APSE tool will be designed to be open-ended. It will

always be able to be improved upon.

6. An APSE tool will be user-friendly. Help messages will be

offered to the user. In the case of the SC manager, it must be

designed primarily for use by managers and administrators. People who

may have very little experience using automated tools.

7. An APSE tool must be reliable.

8. When necessary, an APSE tool must communicate with other

APSE tools. This requirement is especially important to the software

configuration manager. For example, the software configuration

manager will communicate with the documentation system because

documentation is an essential part of SCM.

9. Communication between the user and an APSE tool will be done

through uniform protocol conventions.

10. When necessary, an APSE tool will generate reports.

38

~~~~~~~~~~~~~. ....-......-.................. .-......-....-. .........-.......... .--- .'- .-. L.'-



Besides meeting the requirements of an APSE tool, the software

configuration manager has requirements arising from the definition of

SCM. They are:

1. The SC manager will assist the user in the preparation of

documents. Preparing documents is an important part of SCM.

Unfortunately, this task is often considered the most tedious part of

SCM. The automated tools of both the APSE and the SC manager will

make this task less tedious.

2. The SC manager must allow the user to easily check on the

status of any object. The tool will obtain this information from the

object's history attribute. One of the main reasons for SCM is to

control the software throughout the lifecycle. Knowing the status of

each part of the system will help control the software. Areas that

are causing problems can be identified earlier when they are easier to

correct. This requirement is a key to any APSE SC manager.

3. Since the history attribute is so important, the tool must

assure that it is filled out each time an object is created or

modified.

4. The tool will ensure that the ability to trace the

development of the software system exists. If necessary, a previous

version of the system will be able to be recreated. This ability is

required by the definition of SCM.

5. Standard forms are an integral part of SCM. The tool must

be able to generate them and assist the user in filling them out. If

39

L Z-f . . . . .-. . .... ,. .+.



the required information is in the system, the user should not have to

supply it again (i.e., user's name, project name, date, etc.).

6. The tool will assist the user in disseminating information

electronically to any other project member. This will make the task

of SCM easier by ending the need to make copies of documents and

manually delivering them.

7. The tool will generate any statistics that are beneficial to

the project.

As can be seen, the APSE software configuration manager will be

composed of many different parts. In order to avoid redundancy, the

tool will need to share features from other parts of the APSE.

SA Requirements

The SA part of the APSE software configuration must fulfill the

requirements explained above. The goal of SA is to maintain a

complete history of a project. This is accomplished by recording the

information pertinent to the project, storing it, and when necessary

publishing it.

The SA part of the APSE software configuration manager must meet

all the requirements of an APSE tool.

1. The SA part of the tool will meet a need. It will record

information, store it in the data base, and when necessary generate

reports.

2. When possible, the SA part of the tool will use standard

interface conventions.

3. All the SA software will be written in Ada.

40

.. . " . . .,

• ... • •, " € ..- ,'. " .. ".." ." .. ". • .'.." .".. -.. .': .. '"'... . . . .. . / ...-.. . .. . . . . . .. . . .--- .... . . .... . . . . ... .-. .....-.-.... . . . .l



4. The SA tool will be machine independent and portable.

5. The tool will be designed so that it can be improved upon.

6. The design to the tool will be based on concepts that ensure

the tool will be reliable.

7. The tool will be user-friendly. The queries into the data

base and any other instruction issued by the system will be easy to

learn and use. Clear "help" messages will help the users when an

error occurs.

8. The SA tool will communicate with other APSE tools. It will

use the documentation system for preparing documentation, the filing

system to keep track of how long objects will remain in the data base

before being archived, and the DBMS for queries into the data base.

9. The SA tool will be designed to use uniform protocol

conventions.

10. The SA tool, upon command, will generate reports. Reports

to be generated include status reports, CCB minutes, and review

minutes.

As with the configuration manager, the SA part of this tool has

other requirements besides those of an APSE tool. These requirements

are required to fulfill the definition of SA.

1. Documentation is a major part of the SA function. The SA

tool will ensure that the preparer is assisted in preparing all

documentation. Documentation will not be written by the machine, but

the machine can make the task less tedious.

41

41 i 41



2. The SA tool needs to access the history attributes of the

objects. This is necessary to obtain the information on the status of

the project and trace the history.

3. By definition, the SA tool needs to be able to trace the

history of a project. This will be done by being able to recreate

previous versions of the project.

4. In order to maintain a history of a project, one must keep

track of the changes made to it. Forms are used to keep track of

changes. The SA tool will need to ensure the proper forms are

generated. To assist the user, the forms needed in a project will be

partially filled out by the system if the system already has the

information. Name, date, and project number are examples of

information the system should be able to supply.

5. The SA tool will maintain any statistics the project manager

determines necessary.

6. The SA tool will be a flexible tool. It will allow the

amount of control over the software to vary from project to project.

42

42



i-

V Functional Design

Introduction

In this chapter the functional model of the SCM tool is

presented. It is presented using Structured Analysis and Design

Technique (SADT). SADT is a method designed by SOFTECH to perform

functional analysis and design. In this paper only the functional

analysis or what the system is supposed to do will be presented. The

design or how it will be implemented is left for further research.

SADT is a way to diagram in a top-down, modular, and structured

way the model of a system. The complete model consists of a set of

diagrams or nodes. The first node A-O (read A minus zero) is the most

general. It consists of only one part or box that specifies the

general function of the system. The following nodes get more

detailed. Each one consists of three to six boxes. Each box

represents an activity performed. The boxes are connected by arrows.

These arrows show how the boxes interface with each other. SADT does

not show sequence like a flow chart. The meaning of the arrows are

shown in Fig 5.1. The items indicated by the input arrows are

transformed by the activity marked in the box to the items marked by

the output arrows. The items represented by the control arrows govern

how the activity is done. The mechanism arrow is less frequently

used. It shows the device which performs the activity. This

43

- . = :,: ".. ." ' ""- ". . . .""" ' "' ".. . . . . . . . . . . . . . . . . . . . .." "" """- " -'""" ' ' -""' - - ¢ . i' . ,



control

inputs activity outputs

mechanism

Fig 5.1. SADT Arrow Definition

discussion is a very simplified view of SADT. For a more complete

discussion, see reference 23.

44

---.-.,-,..'.'., ."-? - .'.... .............. .. ...... i...... .;....... ... .. -- . . ".,. ' .. . . .i' ": . -". -'. ..- "?..-



Diagrams

Node Index and Corresponding

Decomposition Structure of Diagram

A-O Accomplish SCM in the APSE (context)

A 0 Accomplish SCM in the APSE

A 1 Perform CI

A ll Prepare FB

A 12 Identify and Label CPCIs

A 13 Prepare AB

A 14 Prepare PB

A 144 Do PB Audits

A 2 Perform Configuration Control

A 3 Perform Status Accounting

A 31 Record Events

A 32 Store Events

A 33 Report Events

A 4 Perform CA

45

................... .......



0 o H4) U 44 W4 10 U 1 0c

4)w 0i W = )-4 4) r I1$ 0)@ 0 0 0 U "OW-4=w

W @30.24.034 04 H W _ c 0)01 V3 Ai 0 0

41 41 0 .. 0 f.4 . .0 0) m44J. M. 0 -4w-4 @3@cc(CJ r. 04 40
CC ( tol.- 04 u*c.m . 0 W w0.30 @0 0 10 0 w41 0 -C0 M~ 14C i4dHc

=.4 m.00 @ M .4 MA C9 A 0c 10 :3 0 -4 0 -4 4) 4 0 0 > cc 4) 4) -4 0
(30-H4 OUU W j V cc i (C 0 (C r4 4C.)0. *(u . . J ~ O .w 0 wr 444

o 4 4* &-40@ v (v 4 g: 0 u W - 0 *.4) H4 "3E4 1

~(a CL 9: 0 0) 0 .0 4:0 1140 u 0 0 0. 0 o0( .@0 0
4)cu0 - c C WU3~ @3 3 -4 r- M 4 C44 " -4 " o 4U

= (aCO qW W0 (A0 00q&40= 40W 43) rl "-4 r-4 .0) a 00u 2t 2..0
41 41 @ 00.. 0 1 >3 =3 00 13 r.r r- ". S4. = 4 9 <~ 1 .w e 04 @3 cc q C w0 44

41 u 1 1; 0 -4 . " (C (.41.0 0COf I4 0 WC 04. Ai w 4.4. *U 4. w

CA -4 C: 4) - 14 = ca " 4) 41 ~~44 4> 4 1 -( k C O M c C '
0 W 0 m ) .0 c c 44 w Mr- W rq Wr 1 1 n4)4
kk " 3t10 to tv U)a. . 410 " 0 "r. c

q0 ) 141c Cr 0 1 0a r. A - o 4 w t0
-4 4 O C 14M 4 (0 ( 4 R 0) CO l - A -H 0.(Li0 60 0 ) 41 - 0 1

@4 @4 JS -H-C 3V Z .4 ) H Q 40 " : 0 O-4" 4d o t

4.4 -4

0 c

@co

0~ to 0 C

@30 U 000~
N i to. 0 04 $4 (

.4 (C 03 0 &j
to W E 0)

004
En (C -H C

r. 3i4 0.0 CAU

0~~0 .-4 W.

00
V)U W14 wo

0.

0

co0 0 0-

(C 0C 0 0)

c-4 -i4 C14.. 00H4)
rC 0 0 @3 a . -

Q IC >@t 4
-- i 4 @3 k4

r. CC 0lV D&

U .4 0
In4 I (C 0

2. 4 (C -H~~Q0~4 "44U 0 3 @
0~~ ~ 414 C

0*'-'.-4 4i 0 .4 0

46



I 1- C I
U) W-4.4 W a o 1 0
43 $ -4 W4G uW Wr( cc 02Q 410 $ -

"a 0 0 aO k c Wt 0 00 %
0 tr -4 w J1Wr. " > C 4.1

41 4W to -4 0
vi44 U .0 wi w 4) A.lU 0 W
-, 4 0 W .44 41*a -4 W M4.41E4 4 (A
Li4@ -C4414W C 4E4 44.-4 0C
u.1. ca FA ( 1.v C-

1 
4-4 41 41 (A r-

m0rC 024JC.4. 4.1 0 0 04
CC 0C i 4) aj 1.0a 4 0 u to

-H 1 4 -. W CO W-4 4) m 4) j 0-4 >
4J 4.1J .-r4 W. 4 02 r-4 'V 4.1 4) 4. .0 4-i4 4.

44 u 5C = >, A -4 a a-I0 *a
A4 CM 4J0 02'V0a 02 U) Co

0) 44 iCC CC 44C U M ) H4
*aV 4.1 0 (Uc)c 4) 3 GJr. 0)
w- u w 02o0 W W0 C~l-H r. 44 0

.0 "4 -44 41 WJC4J"4JC.-4 mC-4. "
W $4 r2-CO J.~ M .V20 1.4 tou

* CC "4 0C C-" 0 N r.0 4 CC )0 0 U 0)
* J3 4J 9 -Z v 4 Q0 .054 WJ4.i~ U02C W

41 a)

U)
! .

A4.

4-4 -H

o 00

00

C: Dt0 W 0
cc 41 0 4

rh m w
2 4) (

"-4 u 0134 6-4

(A0

cu:

(A 41 047

0~% V- -- ' . . . . . . .



14 .0

20' V V A 4 to 4&
to 4 m 4)3 t. C c Q c
4-4 r: 41 0 v Aj C

t-W to5Ww 41
'A. 0 W " 10~.

0 "U 4w 5 .4

U &j A .0 0 0 V 00~

C.J*0 CIO4 4 W v 3k1>

w 0 v v~ 3.0 - 4

44 to 4411 3-0440 w

V L)to W 9: w 0 0
W 31 u o CL ( (D0

Cc 0 r 04

41-

N--4

41
i-H

--4

C14-

w Q N 4-1 A
cc

44

S48

........................................... >~



cni

44i

94 4-4

41-

49



.0 () .4 0) a 1W 0) b
w 0 a o%0.G W 44 C W

0.4JW 4N4X -4 U4) V AiJ 0)

= c. 0a) J. . 4) to 00 4. 44 .j

(A 8 - r c> 4) -H %4 4 0
*0 b0 0 4)44 .-4 u W u 41 A'iC

a)-.- -H. .0Cl - t r 0 9

-H U W 4).Jr.W4JJ -410 $40 A.' to
u 4 4 0.10t Ok mS~ 1-4 p

CAW0 4U1 W 0.WO 0 r.
) 4) A . -1.0 C 414

. 04 ~4J W 4 MAJ 0 0 - 4-4 L).
w- C)kU 4.0$*,-41r.

0 0 > 00 ca r,.h $40. 0c

wa) 4) V4) -4 0 a) WA.0 w 41 40 ". ..
CA .0> k00. 4)odr.0 8 > 4 1 (L u

W0 0wWW a C.Jw 0 0 0.W 440c
U -4 V 4-4 0~,~ U V M0 41 U041 044

,-4 a) 1 -

4) C

Uc

06

a(a

CA to

10 CA

S0 ___._ _ $4 $4

bo :1 > 44

0 m 0

CA-

0 1-4
0 w 0 -I

4,50

* *4** .50



Sc

4-4)

IV~

co)

r-4 44

51



K 0

C: -4 J c:a r o 0:

4. 4-4 60- > ) "J V4 U) W

a) U ) -4 () -0 U) ) -0 0
0 a)OC .a *0 14

-H 0) ) C C: 0) =) C: .0
W W W 0) (A 4J CC '4J-

.. 41 4) 0.IG.U 0J0U

od o~- 0.A c 0CL
a-u.a)04)U*a r-4 IS0

(L) C: 4J4U u~ 0)WU ")

=~ 0 JJ-U)U.0U0.

U U) "1 cc -.4 Q ) *4) U aD
01) 0 w 60w~ 4) t
v r)U~ -4 U0-H 00 4 U) :

0 0 4) -,4CCW O -14 U

W. 'o t-4 "- ~ 4 3 4'

'-44

-.4

-4.

0H0
-4w

$44$

a) E a O

P4)

a)

04

544

52



410
"~4 A)

0 4)W
Xw c .-

(A0

:1 9.. 0

cc0

Ia

0

0 44 P

-VV

0

-

U 44

0 0C

53



Iq 41 0) 0 t

44 1 X4 0 >% 0- ~ 41

0 ~ ~ 0 A O1- (D"t .40W) -
wA V -4C4 c r I 4 - ( 0 1OU -

wO W,4OG u GUC 0 0)0WQ
w .4S W~ U 4w (a" 0 wU > *" w 0

=-4 u .~C W to0* : 4 14t -I-W4.
-W 0 )C w oda r 4-C 4 J0 0 4

0) 4~)0 A 60~W W )Uc
q0-i444

r00:3t
u 14 1 . 0r

0 0)u"00u.0r 4 *
4- M 4-W-H "

CC C C 1 CA M 4 14W 0 0 U 3 0

54j

pr

U~~~t V .... .. * .. ~ * . . . . .



0 co 0 0) D P1.0

(a .0 w 44 0 -

0L 0 -4 0c 0 0 ..4

0. 4 41 r.
0 DI (0 0

00 -H o 4Z~ 0 co

0 i sU4 U I

O A0 4 0
4J>44. 4J

0 - 0 41-1 0

W0 Ah o 00 0- -

SC

41h
u

W0

00
0.4-4

(U 0

I4

rA to
E E

A55

4)>0



v4JWO4OO .0 00~Sa. 0
IVw 16 41 rw W 00 0

$.4 0 A u 0O .44 u0J w4 r- 4J 4 .0 M
0)C > W 60 C: r. 4 0 44 C 0 0 0 0 0 4J 0J

C 4 ) )0 . (WWH4 s-I "aA i V0 60 0) 0 -w 4
= tk Ai 4).~ too 4) . *n E = j

CL00-14 "4 *,4) .44 0 44 00
UW- *cU0 0 W r.- j 0

w ~w w 3 i H )1-o 4

00 CVA W.-4t&4 V ( ( > 0C - - m 41 0)~ Ci i
4.) 54j -1 m 04s w U CC 4- -1 9: Z C U 13 4-4 4 U4 4 -4 C

-4W 1 4 41.0a 0 " 0 4 0 t0 0 )r

$4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .m a) )>.C : W-q4 3W c

u cC 0p"- S4 ; )a r

-H 0 4 4 16 )0 )M 4 L :W U 4

$4 41

00

bo Z " r-I z.. .

60 0
0 Ai

S L

560



41 41 -H wrI4 )
Ccd d~ . 4i co1 4) "1 ,-~ ) r.~-

o AOO u 40 .0q 0

4) 41 r a 0 E

-u > q - cc A-i a) 4
C41 ( m C C.- -4 41J m m

0) to -1 w di44 -4 (C r. Wl

o0$ .0 ) to 3t a m -A 0
U ~04i0 )c w0)0 00

w) C).. CO 0)~~r 4)- u 0
u D .U0 C 0.C0) > u u 4

:30 0) 4JU)Ai-H0) w w 0

1.~--to 0 " r-4 $4X

" c c PC 40 "4 4 4 0)0-ra
4 0 " " " 0 CC $4 "

> """4-

00 -r4

0) W

0 ")

Cf0)

4).

0 I-I

MU .

00(D __ _ _ _

0 >.
0)1L

c57

0 co.- 0



Q)0r) 4j0(
44-

0- 4- ~- Ld 14~.

U) 4'-4 -4 CO 0) 44

o 4 4-' ~ C

LdO dc toc "~ 41 a)4.(-c4a
C jJ .4 .4U 0 4) .0 A.

.C X) C) 0d "U w )

41 00 Lo

4--1

0

co.
C)q

r..

Ai

I41

II
>5

0
. . . . . . . . .. . . . . . . . . . . .

. . . . . . . . . .. . . . . . . . . . .

- A - .- s--s



A&j4mto0 .~ CO V44 jML
1 0 N4W JJ 41.40 C 314 V U4

43...4 ~ ~ ~ ~ * 4.1 0. 3.4 .. 4 C~I.

u0c0w w 0 ).~ 0S.4)4.4 -H (3 4
(A -40 CL -H 0 r-4 -rA :3 0 4 r.

M 44 rI -4 (L #O4-40 k-4 .~

X 44 ~ 
4 

034 = 00 0 4 0J " "
w Ai 41 0. 0r 4 4i u.. 3 OO4 C

0.01~ .. 4 0 4v-1 *00
tC CU(L 4-400 CC C44-1 4)CC~ 4 r.
" H W. >%4 4 4 44 0 " .44 -to c

4 r. 4 w 04J.0 - O~ 0 A .

$4 0 i4J0 0 cc W 0. W W U 0 - m0 CO
..44" 3"4 CO C 43 :3X 4 4 WO 0 H -

to 0

4.41

41

V 43 m43

0 443C
co 4-4.H.'

43 CO

>00

434 4

4..1

41 40
00 to 0.

0 04 0
'".4 43~

0. u-404
4) L7 7--

41O 0

0 1... a4C

59



VI Conclusions and Recommendations

Conclusions

From this research, the following conclusions were drawn:

1. SCM is a complex but important task in the software life

cycle. Through it the cost of software can be reduced and the quality

improved.

2. SCM is a relatively new discipline. Currently, very little

guidance is offered on how to accomplish it. The APSE will correct

this situation.

3. The APSE configuration manager will not completely automate

the SCM task. But it will make it easier and less tedious to

accomplish.

4. As with the other APSE tools the configuration manager will

reside in the data base and share other APSE tools.

Recommendations

This paper can be used in several ways. First, it can be used

as a tutorial for an overview of SCM and the APSE. The basic

principles of each are covered. Second, it can be used to analyze

other APSE configuration manager designs or systems. The requirements

chapter can be used as a checklist to ensure that all of the

requirements of Stoneman and the definition of SCM were met. Lastly,

it can be used as a first step towards building and implementing an

60

.... .*.. . . . . . .. . . . . . . . . - - . ... . ~ .. - .-
- -. .... ,.. .... ... ... '..... . . . . . . . .



APSE configuration manager. Both the background work and the

preliminary design of what the tool must do is complete. The next

step will be to design how to implement it. The emphasis in the

implementation design should be in meeting the requirements of the

MAPSE. Stoneman requires that the MAPSE configuration manager be able

to allow access to the history attributes and ensure that the manager

has control over the persistence of objects in the data base

(Ref 10:38).

61



Bibliography

1. Aeronautical Systems Division. Airborne Systems Software
Acquisition Engineering Guidebook for Application and Use of the
Guidebooks. ASD-TR-80-5028. Wright-Patterson AFB OH, October
1980.

2. - Airborne Systems Software Acquisition Engineering

Guidebook for Configuration Management. ASD-TR-79-5024.
Wright-Patterson AFB OH, November 1978.

3. --.--- Airborne Systems Software Acquisition Engineering
Guidebook for Documentation Requirements. ASD-TR-79-5025.
Wright-Patterson AFB OH, November 1978.

4. Airborne Systems Software Acquisition Engineering
Guidebook for Regulations, Specifications, and Standards.

ASD-TR-78-6. Wright-Patterson AFB OH, November 1977.

5. • Airborne Systems Software Acquisition Engineering

Guidebook for Reviews and Audits. ASD-TR-78-7. Wright-
Patterson AFB OH, November 1978.

6. - ...- Airborne Systems Software Acquisition Engineering

Guidebook for Software Development Planning and Control.
ASD-TR-80-5022. Wright-Patterson AFB OH, February 1980.

7. - Airborne Systems Software Acquisition Engineering

Guidebook for Verification, Validation, and Certification.
ASD-TR-79-5028. Wright-Patterson AFB OH, September 1978.

8. Bersoff, Edward H., Vilas D. Henderson and Stanley G. Siegel.
Software Configuration Management An Investment in Product

Integrity. Englewood Cliffs NJ: Prentice-Hall Inc., 1980.

9 Bryan, William, Christopher Chadbourne and Stan Siegel, eds.

"Tutorial: Software Configuration Management," Initially

presented at the IEEE Computer Society's Fourth International
Computer Software & Applications Conference (COMPSAC 80). IEEE
Catalog Number EHO 169-3. Falls Church VA: IEEE Computer
Society, 27-31 October 1980.

62

...............................................



10. Buxton, J. and V. H. Stenning, eds. "Stoneman," Requirements

for Ada Programming Support Environment. U.S. Department of
Defense, February 1980.

11. Carlson, William E. "Software Research in the Department of

Defense," Proceedings of the 2nd International Conference on
Software Engineering. IEEE Catalog Number 76ch125-4c.
379-383. October 1976.

12. Clema, Joe K. and Larry Levsen, "Management and Control of
Large-Scale Software Systems," Weapon System Software
Acquisition, School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB OH. 5-14 (1979).

13. Gunther, Richard C. Management Methodology for Software Product
Engineering. New York: John Wiley & Sons Inc., 1978.

14. Knight, B. M. "Software Quality and Productivity," Weapon
Systems Software Acquisition. Wright-Patterson AFB OH: Air
Force Institute of Technology, 117-128.

15. Pyle, I. C. The Ada Programming Language. London: Prentice-
Hall International Inc., 1981.

16. Rome Air Development Center (Intermetrics + Mass Comp Assoc).
Ada Integrated Environment Design Rationale: Technical Report
(Interim). 13 March 1981.

17. Rubey, Raymond J. SofTech, Inc. Course EE 5.45, "Software
Acquisition," School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB OH. Lecture materials. 1982.

18. Stoner, Bill. Logicon. Course EE 5.45, "Software Acquisition,"
School of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB OH. Lecture materials. 1982. -<

19. U.S. Department of the Air Force. Configuration Management.
AFR 65-3. Washington: Government Printing Office, 1 July 1974.

20. U.S. Department of Defense. Configuration Management. DOD
Directive 5019.19. Washington: Government Printing Office, I

May 1979.

21. U.S. Department of Defense. Configuration Management Practices
for Systems, Equipment, Munitions, and Computer Programs.
Military Standard 483. Washington: Government Printing Office,
31 December 1970.

22. U.S. Department of Defense. Reference Manual for the Ada
Programming Language Proposed Standard Document. Washington:
Government Printing Office, July 1980.

63



CHANCE REQUEST

1. System name: 2. Control no.:

3. Application level:

System EJ Hardware --J Software L-- Document j-j Other L-I

4. A. Originating organization 5. CI affected 6. Documents affected
(highest level) A. D. _.._

B. E.
B. Initiator C. _ F.

C. Telephone # 7. Priority: 8. Other systems/

A. Routine software/equipment
affected

D. Date B. Urgent L Yes Fj NoI-
If yes, explain in

C. Emergency -j block 9.C

9. Narrative

A. Description of change

B. Need for change

C. Estimated effects on other systems/software/equipment

D. Alternatives

To be completed by cognizant CM manager

10. Date received 12. Disposition

11. ECP requested 13. Signature 14. Date

.1

Yes -1 No '-'-

Appendix A - CR Ref (8:201)

64



.7

SOFTWARE INCIDENT REPORT

1. System name: 2. Control no.:

Part I
3. User activity 4. Incident occurred 5. Software identification (if known-

A. Organization A. Date A. Name/acronym

B. Initiator B. Time B. Module/subroutine

C. Telephone # 6. Related SIR C. Software function

Superseded F -_-_-
D. Date 7. Urgeny

Modified higt_ me-- lou= n/1 -

8. Problem category 9. Affected documents 10. Related documents

Document E A. D. A.
B._ E. B.

Executable C. F.
code E--

11. Media ID no._ 12. Executable 13. Duplicate 14. Problem duplicated
code address media tested

Tape ED yes no n/a

yes= nc= During run
Cards- After restar

After reloadDisk

15. Test spec reference 16. Dump data information

17. Description of incident, effects, and recommendations

Part II

18. Developing activity 19. Responsible organization/name 20. Telephone

21. Analysis/corrective action

22. Disposition:

NAR E--DTF SCN r--7CR _

Documents affected:
A. D. _"___

B. E. -"
C. F.

23. Comments to initiator:

Appendix A - SIR Ref (8:202)

65



_-

1-..

| . .. .. ".

-i 4 ."--4

0.'-" ', Iia _

4 4 1 k

:ii .1 i.

4 . . ' .. I

--- 4 41 4

" ... E]

* T

• V 'II i

. - a 1 1 , - , a .

.~ 1 . 4 . %

Apenix - PRe (8) -.

. L.'. , .•. _ '. _% . - . _- _ -- " . _4- 4 ._.-. - 4' -. , .. , ' - 4 '_ _, 1" - .. " , ",'' - " . . ' .-. ',., ' ' , ' %.' ' e '.. .: % ' '" ".".. :" -..... '''-''.. .. .- ' . .. '''' '.. .. ... ... '''''... ... ''' ''.....""''''. 4." - "'4. . -" " '" . . ." """" . ."



SOFTWARE CONFIGURATION MANAGEMENT PLAN

2. Identification No(s)

Data Item Description Agency Number
1. Title

Software Configuration Management Plan Navy DI-E-2175
3. Description/Purpose 4. Approval Date

3.1 The Software Configuration Management Plan 29 November 1978
(SCMP) describes the contractor's internal computer 5. Office of Primary
software configuration management organization; the Responsibility . -

responsibility of the members; the relationship NM(MAT-09Y)
among the several offices/divisions; the policies 6. DDC Required
and procedures for identifying the documentation
of the functional and physical characteristics of
configuration items required by the contract; pro- 8. Approval Limitation
cedures for controlling changes to configuration
items during development; (continued on page 2)

7. Application/Interrelationship
7.1 The Software Configuration Management Plan pro-

vides the contractor the means to consolidate all 9. References (Mandatory
policies, procedures, organizational descriptions, as cited in block 10)
resources and schedules relating to software config-
uration management in one document. The SCMP pro-
vides the procuring activity with detailed knowledge MIL-STD-1679 (Navy)
of the contractor's configuration management.
Through the SCMP the procuring activity can monitor
the contractor's application of configuration manage-
ment principles in conformance with standards invoked
in the contract. -...

MCSL Number (s)
7.2 This Data Item Description supersedes
UDI-E-22191.

10. Preparation Instructions.
10.1 Unless otherwise stated in the solicitation, the effective date of the

document(s) cited in this block shall be that listed in the issue of the DoD Index
of Specifications and Standards (DoDISS) and the supplements thereto specified in
the solicitation and will form a part of this Data Item Description to the extent
defined within.

10.2 Content and Format Instructions. The Software Configuration Management
Plan shall be in accordance with the following content and format instructions:

SECTION 1 - Introduction.

1.1 Purpose and Scope. This paragraph shall state the purpose, scope, and
eneral applicability of the SCMP.

1.2 Definitions. This paragraph shall reference applicable directives or
glossaries containing definitions of terminology used in the SCMP and shall
further define any terms used which are not contained herein.

1.3 Configuration Management Summary. This paragraph shall provide a concise
summary of the approach used to accomplish configuration management. Describe the
plan's major features and objectives.

DD FORM 1664 S/N 0102-LF-039-4000 Page 1 of 3 pages
1 JUN 68

Appendix B -DID for CM Plan Ref (9) j
67

** * * * .** .* .-. --.... .. *.- *. * ~ -- ~ .* .. - . .. . ... ,: . ... - - - . - - o .



DI-E-2175
3. DESCRIPTION/PURPOSE (continued)

procedures for recording and reporting change processing implementation status; and the -- -

external relationships required to maintain total system compatibility.

10. PREPARATION INSTRUCTIONS (continued)

SECTION 2 - Applicable Documents.

This section shall list those specifications, standards, manuals, and other
documents applicable to the configuration management effort. Each document shall be
completely identified by title, document number, issuing authority, and date of issue.

SECTION 3 - Software Configuration Management (CM) Organization

This section shall identify the contractor's organization for CM. It shall show the:

a. Relationships among the contractor's project organization, functional

organizations, and facility management.

b. Responsibilities and authority for CH of all participating groups and
organizations.

c. Identification of contractor CM organization including configuration control
boards, both Internal and external.

d. Policies and directives relating to CM.

e. Relationships among the contractor's software CM organization, the contractor's
hardware CH organization, and the project's hardware CH organization when the software

is only one element of the weapon system being developed.

SECTION 4 - Software Configuration Identification.

This section shall present the contractor's implementation plans for:

a. Selecting and identifying configuration items, as required by the contract, and
additional items considered necessary by the contractor to ensure proper configuration
identification.

b. Developing, numbering, changing, and maintaining specifications and their
relationship with specification trees.

c. Establishing internal baselines as appropriate.

d. Preparing and processing of design specifications during development and their
Identification and relationship to higher level specifications or documentation.

e. Establishing the development support library.

f. Assignment of nomenclature and serial numbers.

SECTION 5 - Software Configuration Control.

This section shall describe the contractor's organization and procedures for:

a. Configuration control, including depth of control, interfaces, and
subcontractor/vendor control.

Appendix B - DID for CM Plan Ref (9)
(continued)

L

68



:" :-.. . ".-. ---.-.. . -. ." .'" - -. " . . -. . .. - -= . -: - .. . . .. 7 . . . . .- :: - - - . . . . . - . ..

J

DI-E-2175
10. PREPARATION INSTRUCTIONS (continued)

b. Preparation, processing and submittal to the contractor's internal configuration
control board of Software Change Proposals (SCP), Software Enhancement Proposals (SEP)
and Engineering Change Proposals (ECP).

c. Preparation, processing and submittal to procuring agency or the procuring

agency's representative configuration control board of SCPs, SEPs, and ECPs.

d. Promulgation and implementation of specification change notices.

e. Preparation and processing of Software Trouble Reports (STR).

f. Ensuring that the implementation of approved changes is reflected in all facets
of the affected baselines, program descriptive documentation, and program materials
(e.g., design, test, and user narrative).

g. The contractor's software configuration control board.

SECTION 6 - Software Configuration Authentication.

This section shall describe the contractor's procedures for:

a. Reconciling deliverable software to Its approved documentation.

b. Assuring that the software, descriptive documentation, and program materials are
properly identified.

c. Assuring the incorporation of approved changes.

d. Reconciling the configuration status accounting reports and the status of the
software, descriptive documentation, and program materials with the approved baseline(s)
and its approved changes.

SECTION 7 - Software Configuration Status Accounting.

This section shall present the contractor's procedures for collecting, recording,
processing, and maintaining data necessary for producing configuration status accounting

reports. it shall include:

a. Formats and data elements for software CM status accounting records and reports.

b. Content and format of periodic summary reports to reflect status of SCPs, SEPs,

and STRs as appropriate.

SECTION 8 - Interface Management.

This section shall describe the contractor's plan for coordinating efforts involved
in design and data management to ensure compatibility through interfaces with associated
contractors.

"" SECTION 9 - Subcontractors & Vendors.

This section shall present the contractor's system for control over subcontractors
and vendors. In particular, it shall explain the capability of subcontractors/vendors
to support the requirements of Configuration Management. It shall enumerate the
requirements and provisions for review and approval of all changes submitted by

subcontractors/vendors to comply with established procedures.

Appendix B - DID for CM Plan Ref (9)
(continued)

69

* ..- - -.. ..-. .... .- - ~ .. * . . . . . . . . . . . . . . . . .. •.".-.



Vita

Susan Mary Schultz was born on 8 June 1953 in Royal Oak,

Michigan. She graduated from Royal Oak Dondero High School in 1971.

She received a Bachelor of Arts degree in Math in 1976 from Wayne

State University in Detroit, Michigan. She entered the Air Force on

active duty in 1978 and, in November of that year, received her

commission from Officer Training School. Until entering the School of

Engineering, Air Force Institute of Technology in June 1981, she

served as a Computer Systems Programs Officer at Headquarters Tactical

Air Command, Joint Studies Group, Nellis Air Force Base, Nevada.

70

* .. . ,. .-



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

U REPORT DOCUMENTATION PAGE

Ia REPORT SECURITY CLASSIFICAlION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED

2s. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;

2b. OECLASSIFICATION/OOWNGRADING SCHEDULE distribution unlimited.

4, PERFORMING ORGANIZATION REPORT NUMBERSI 5. MONITORING ORGANIZATION REPORT NUMBER(S)

& S/MA82D- 12 _______________________

6,. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

6If applia ble

School of Engineering AFIT/ENC

6c. ADDRESS (City. State and ZIP CodeI 7b. ADDRESS (City, State and ZIP Code)

Air Force Institute of Technology

Wright-Patterson AFB, Ohio 45433

Se. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicabie

8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Classifieation)

See Box 19

12. PERSONAL AUTHOR(S)

*Susan M. Schultz, B.A., Capt, USAF
13&. TYPE OF REPORT 13b. TIME COVERED 14.OATE OF REPORT (Yr.. Mo.. Day 15. PAGE COUNT

MS Thesis PROM _____TO ____ 1984 June 70
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB. GR.
Ada, Configuration Managment,'Ada Programming Support
Enviroment (APSE).

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: Preliminary Design of The Ada Programming Support Enviroment
Configuration Manager

Thesis Chairman: Patricia Lawlis, Captain, USAF

i-n lAW / vdt190-I

-~ V L *D;'ti... / cL J I
j~p~ er tot -,oh !- .eop de

Peon tc I - -- i ". (AIGd.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

.JNCLASSIFIED/UNLIMITED IR SAME AS RPT. E OTIC USERS El UNCLASSIFIED

221. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL
i nclude Ar ea Code) '

* ,Patricia Lawlis, Captain, USAF 513-255-3636 AFIT/ENC

DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

o" °." ".".•" •..

"" - • - .. . " -'- ;-""- ,'-''-'" "'-,--,- "-' -"" " - ,-"• " ,- " ." ," ." ";_";_" -' ": ." . . .-.. . . ..". .-.. . .".. .-.. . . . . . . .-.. . . . . .,' -'.. . . . . .- :'- ' '



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Today the development and maintenance of software are becoming

prohibitively costly. With the goal of reducing the cost of producing
a software system without sacrificing the quality of it, the
Department of Defense (DOD) is sponsoring the development of the Ada

Programming Support Environment (APSE). This paver exp~ins the
APSE. It also explains the requirements and gives a preliminary
design of one of the major tools of the APSE, the configuration
manager. The preliminary design of this tool is presented using -r
Structured Analysis and Designf -SADT) diagrams? The preliminary
design includes only a functional description of the configuration

manager. How to implement it is left for further research.

Prior to presenting the preliminary design of the configuration

manager, a description of ho4,(SCMis currently practiced is given.
SCM is divided into four functions. They are configuration

identification (CI), configuration control (CC), status accounting

(SA), and configuration auditing (CA). SA is the only function that
can be completely automated. Therefore, the preliminary design
emphasizes the SA function.

FI

- . .- . .. *

- .°....................



FILMED

4-85

DTIC


